BIM

What comes to your office manager's mind?

BIM

For building (as noun), not for landscape
For building (as verb) and we are building environment

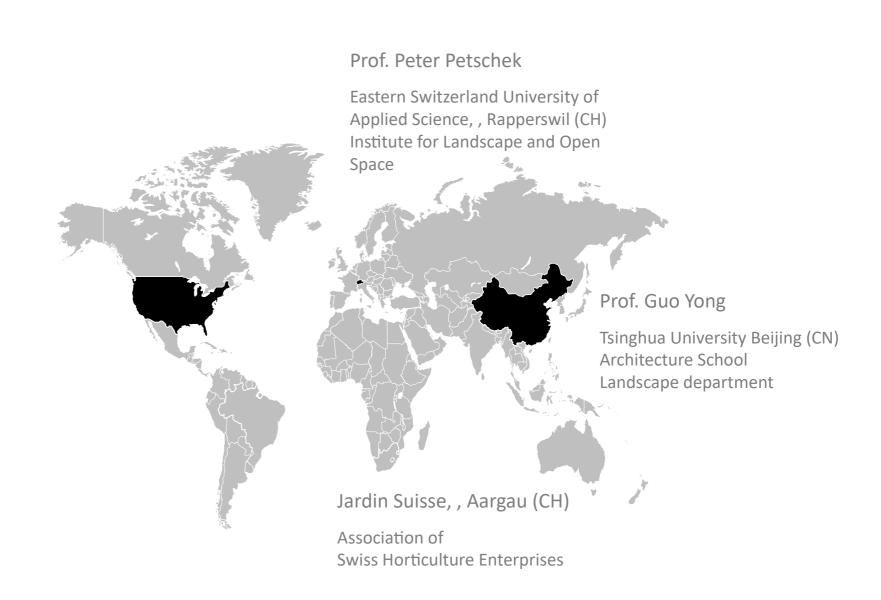
Information as the core is a new, unfamiliar concept We doing this with GIS since ages

Is BIM ready for landscape architects?

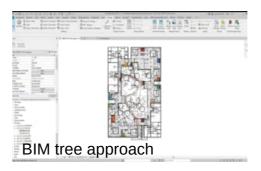
Are landscape architects are ready or BIM?

SMART BIM TREE PARTNERS

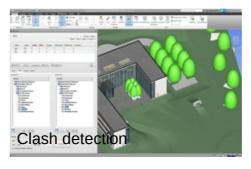
Andreas Luka



Designer
Planting trees
in Computer


Site engineer
Planting trees
on site

City Official
Planting trees
on paper



STATEMENT OF THE PROPERTY OF T 120

DEMOI

110 120

SMART BIM TREES DATA

Botanical parameters

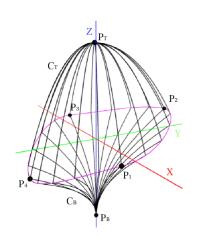
Selection of suitable species, Based on existing botanical databases

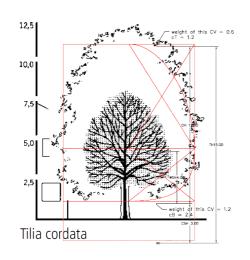
Nursery stock information

Provided by Jardin Suisse / Tree nurseries, Connecting BIM to specification / tendering and ERP

Defines the start parameter for growth simulation

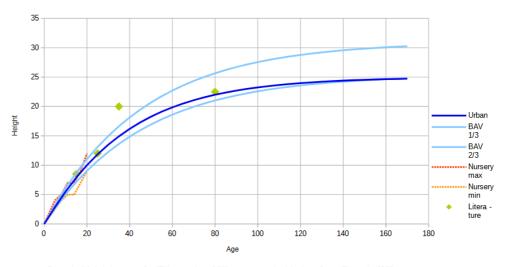
Form and growth parameter




Defines the trees space requirement over time Basis for clash detection Basis for performance analysis

Unique identifier & consistent parameters

Connects the tree with his digital twin across systems


SMART BIM TREES FORM & GROWTH PARAMETERS

CESCATTI HULL MODEL AND SHAPE PARAMETER DERIVATION

- Crown represented by 6 points and two shape parameters suitable for existing trees
- Reduced to six parameters for symmetrical (new) trees
- Root (hull model similar to crown model) with 1 point and one shape parameter = two parameters
- Parameters based on analysis of botanical and forestry data

Growth (Height) curve for Tilia cordata Mill. compared with data from Bavaria [28]

GROWTH CURVE ESTIMATIONS

- Data from tree nursery article list
- Data from forest science and mensuration
- Other publications (accident reports), known ultimate size
- Chapman-Richard curve with interchangeable parameters
 k, p (simple form for statistical analysis) ← d, K (meaningful and interpretative)

SMART BIM TREES FEATURES

COMPLETE & CORRECT

- Crown, trunk and roots
- All elements described by parameters
- Parameters based on analysis of botanical data
- Parameters compatible with forest science and mensuration

DYNAMIC

- Initial size based on tree nursery data
- Size and form as function of initial size, age and site index

BIM READY

- Volume models for clash detection
- Specifications based on CoBIE standards
- Unique identifier and consistent data set Lightweight for fast processing of large models

INTEROPERABEL

- OpenBIM and open GIS standard conform
- Central algorithm and data independent from modeling software and available as cloud service via API
- Atomic BIM principle: storing and exchanging of underlying information

Egy state of a control of a con 120

DEMO II

Performance analysis

Evaluating and optimizing landscape design based on predictable and accountable outcomes and impacts

BIM to Field – Digital planting plan

Asset tracking from nursery / onsite stocks to FM handover with machine readable labels and RTK-GPS to guide forklift operator

Virtual assets

Creating assets for virtual reality / visualization with space colonization algorithm in Blender BIM to tree cadastre (GIS based FM)