

DLA 2021: New technologies in Workshop 7: Use of UAV for your Environmental Data: the Malta experience

28 May 2021

Prof Dr Saviour Formosa

<u>e: saviour.formosa@um.edu.mt</u> p: https://www.um.edu.mt/profile/saviourformosa

Objectives:

• To describe the background for GI and spatial data in use in Malta for spatial planning, environment, heritage, crime

- To depict some outputs and uses
- To describe the approaches taken
- To depict the technologies employed

Need Tools

- to help us understand the reality out there
- to aid decision takers to base their deliverables on evidence-based input
- to trigger the recall caches

The power of Visualisation....

If we need to investigate our environment we need to digitally recreate it in a way that reflects that reality

SIntegraM

Spatial Data Integration for the **M**altese Islands

SIntegraM

ERDF.02.030 SIntegraM Project	EUR7m + EUR0.9m + EUR0.2m (UoM)	Start Date – 05/01/2015
End Date – 30/06/20 - 22	Actual concluded date by Planning Authority 31/12/2019 with an extension to 2022 due to a further EUR900k input	SIntegraM relevant deliverables: • Strategy for a National Spatial Data Infrastructure (NSDI) • National basemap, Imagery and LiDAR • Core Infrastructure • Aerial/Terrestrial/Marine technologies • Immersive technologies • Reprojection Tool • Dissemination Tool

Acknowledgements: Malta Planning Authority as Project Leader

SIntegraM

- identification of information gaps in the data cycle
- identification of data being created
- creation of new basemap (1988 legacy)
- integration of all data in a national system
- creation of data exchange security protocols
- building of infrastructure
- training of experts
- Dissemination:
- 3D pointclouds <u>www.cloudisle.org</u>
- Portal <u>https://sintegram.gov.mt</u>
- Geoserver <u>http://geoserver.pa.org.mt/publicgeoserver</u>

Basemap

An object-oriented geospatial polygonised seamless dataset of nonoverlapping polygons that covers the whole of the Maltese Islands.

Basemap

An object-oriented geospatial polygonised seamless dataset of nonoverlapping polygons that covers the whole of the Maltese Islands.

Basemap: 3D elements

Orthoimagery

DSM, DEM

Lidar

Lidar

WebGL

LiDAR Runs:

2012	plane based	flights
	AGL:	3000m
	requested:	1pts per msq
	acquired:	4pts per msq

2018	plane basec	l flights
	AGL:	600m
	requested: acquired:	40pts per msq 180pts per msq

Updating the base map and data: 2018

Going from this...

Updating the base map and data: 2020-2022 rolling every 3 years ... to this

Technologies available: Aerial

what I wish for...

Technologies available: Aerial

what I ended up with...

Tech Mavic Pro 2 Matrice 210 Matrice 600 Pro RiCOPTER

RGB, IR, GPR

Technologies available: Marine

Technologies available: Marine

typical target as detected by AUV during mapping

Technologies available: Terrestrial Surveying Tech

Tech	GNSS Network
	Total Stations
	Robotic Total Stations
	Field GNSS Rover GS16

Technologies available: Terrestrial Laser Scanner

Tech	TLS LiDAR Scanner
Scan	500,000 points per second 7 images 46 seconds 20million points 300Mb
Floriana Project	531 scans 950Gb
Software	RiScan Pro

Technologies available: Mobile Laser Scanner

This is what we think we are...

Tech	MLS VMX 2HA
Scan	2 LiDAR scanners 6 cameras 500 scans per second
Typical Day	1 Tb capture 4 Tb analytics

Technologies available: Mobile Laser Scanner

This is what people think we are...

Technologies available: Oh and I forgot again

These are two cool gadgets...

ackpack ebot
AR
SS, RGB, LIDAR

With such responsibility... there are consequences

Logistics of update process

- 1. Identification of the town to be scanned
- 2. Design of the drone paths
- 3. Transformation of paths to GIS
- 4. Mapping of GCPs
- 5. Marking GCPs in-situ
- 6. Acquisition of permissions to fly
- 7. Drone scanning
- 8. Data transfer (Imagery)
- 9. Photogrammetric creation of tie-points
- 10. Anchoring of tie-points to GCPs
- 11. PointCloud generation (Medium and High density)
- 12. DEM and orthomosaic generation
- 13. Basemap update
- 14. Dissemination: GI and WebGL

Limitations

- Licencing
- Insurance
- Permitting AGL 60m
- GDPR
- Angry birds
- Court cases
- Weather
- Rogue AUVs
- Electronic interferences
- Pigeons and predators
- Sightseeing planes 500ft Military pilots

The Process: The GI component

Various specialists in GI

- MSc, PhD levels
- Techs
- Admin

The Process: Identifying the Ground Control Points

and painting them...

The Process: The Flight Planning component

- Drone Deploy

Case: Xewkija

Workspace (1 chunks, 22364 cameras)

- Chunk 1 (22364 cameras, 59 markers, 17,324,816 points) [R]
- E Cameras (22361/22364 aligned)
- 🕨 🚞 Markers (59)
- ** Tie Points (17,324,816 points)
- Depth Maps (22343, Medium quality, Mild filtering)
- III Dense Cloud (1,092,447,543 points, Medium quality)
- 3D Model (217,306,159 faces)

Case: Xewkija – Flight Paths

Case: Xewkija – Cameras and GCPs (Ground Control Points)

Case: Xewkija – Solid Meshes and Textured Meshes

Case: Bormla Dock 1 Rehabilitation – Grand Harbour

Case: Bormla Dock 1 – Flight, Images, Cameras

DJI_0906

DЛ_0678 DЛ_0914 ыл 06/8 Dл 0914 ыл 106/8 Dл 0639 ыл 06/7 ыл 106/9 Дл 0840 Эл 0640

₿Л_0676 рл_0834

BI 0675 DJI 0836 DJI_0641

0674 DJI_0822

DJL_0672 DJL_0818 DJL_0645 DJL_0671 DJL_0854 DJL_0645 DJL_0804 DJL_0646

06710

- 10

JI 0667

DJ_0691

ВЛ 0665

DI _0695 DЛ_0663

DЛ_0669 DЛ 0798

DJT_0784

DЛ 0666 DЛ 0862 5 DЛ 0652

DJI_0780

бя_0664 DI 0863 DЛ_0654

БЛ_0864

DЛ_0763 DЛ_0656

_____DЛ__0658

DJI 0746 DJI 0748

DJI_0872

9Л_0660 0.57 DЛ_0657

0650

•DЛ_0865 DЛ_0655

DJI_0687

9Л_0816 ДЛ_0644

DЛ_0856 DЛ_0647

0/98 DII 0648

DJI_0799 DJI_0649

DJI_0651

DJI_0653

INI_0720 DЛ_0846 27 07 6 10

DJ1_0718

DII C

DJI_0900

DJI_0905

DJI_0902

DJI_0730 DЛ_0727 DЛ 0714

DJI_0729

DJI_0739

DJI_0734

DЛ_0737

DJI_0738

19

DJI_0740

DJI_0888

DЛ_0736 DJI_0705

1010

DJI

10 10

. DJI_0704 DJI_0693

DЛ

DJI 0699

DЛ_0896 **Д**Л_0713 IN DAL OF DЛ_0810

DЛ_0892 DЛ_0740

DJI_0791_DJI_0709

Case: Bormla Dock 1 – Pointcloud, DTM, Mesh

Case: Bormla Dock 1 – Rendered Model – www.cloudisle.org

Other Cases: Ribbon Development on Ridges

Environmental Assessment and Mitigation:

- Resource Extraction and Quarry Rehabilitation

Urban Conservation Area revisiting

Bidnija - 2000 Year old Olive Grove

Erosion and Cliff Stapling

Undocumented Tunnel Discovery

Crime Scene: Car bomb

Crime Scene: Car bomb

Civil Protection – Fireworks Factory Incident

Case: Deep Underground

Case: Deep Underground

Scanning the Facades – TLS-MLS - a Covid-19 light

Scanning the Facades – MLS

Scanning the Facades – MLS

SIntegraM CAVE – Immersion Lab

Tech	CAVE Computer Automated Virtual Environment 4 walls, 2 floors, 1 roof
	Oculus Rift Magic Leap
Software	Unity

The CAVE SIntegraM Immersion Lab

The Wired and Unwired Tech

VR – Oculus Rift

AR/MR – Magic Leap

Taking the studies to the Gadgets programme

AR/MR – Magic Leap

Decisions affected based on Magic Leap – the Floriana Gardens

Decisions affected based on Magic Leap – the Floriana Gardens

Taking the studies to the Courts

Gadgets Vimeo videos – copied to Chat

Cloudisle.org 3d pointclouds – links copied to Chat

DLA 2021: New technologies in Workshop 7: Use of UAV for your Environmental Data: the Malta experience

28 May 2021

Thank You

Prof Dr Saviour Formosa

e: saviour.formosa@um.edu.mt p: https://www.um.edu.mt/profile/saviourformosa