n Lanoscape Architecture

Presented by

Workshop 2:

Dr. Jozef Sedlacek Ing. Radim Klepárník Mendel University in Brno, Czech Republic

Digital Landscape Architecture Conference 2021

Prof. Dr. Matthias Pietsch M.A. Dae Yong Kim Anhalt University of Applied Sciences, Germany

Workshop Timeline (total 90 minutes)

Part 1

Introduction of UAVs & UAVs in Landscape Planning and Nature Conservation (20min.) Prof. Dr. Matthias Pietsch, M.A. Dae Yong Kim Questions/ Discussion (10min.)

Part 2

UAVs in Landscape Architecture (20min.)

Dr. Jozef Sedlacek, Ing. Radim Klepárník

Questions/ Discussion (10min.)

Part 3 Discussion (30min.)

Prof. Dr. Matthias Pietsch

M.A. Dae Yong Kim

Research Group Applied Geoinformatics and Remote Sensing

Introduction of UAVs

What is Drone/UAV?

A drone is an Unmanned Aerial Vehicle (UAV) that is either remotely controlled by human or controlled by an integrated or outsourced computer and thus becomes (partially/fully) autonomous. (O. Bendel, 2021)

Comparison : Satellite/Airborne/UAV(Drone)

	Spatial Resolution /Pixel	Field of View
Satellite	1 – 25 m	10 - 50 Km
Airborne	0.1 – 2 m	0.5 - 5 Km
UAV (Drone)	0.5 – 10 cm	50 - 500 m

Increasing degree of resolution

Dubbini et al. (2015)

Field of view

https://www.researchgate.net/figure/Comparison-of-UAV-with-other-manned-airborne-and-satellite-platforms_tbl1_275030305 https://www.researchgate.net/figure/Earth-Observation-using-remote-sensing-technologies-including-satellites-and-aerial_fig2_327051854

Grouping of examples by performance

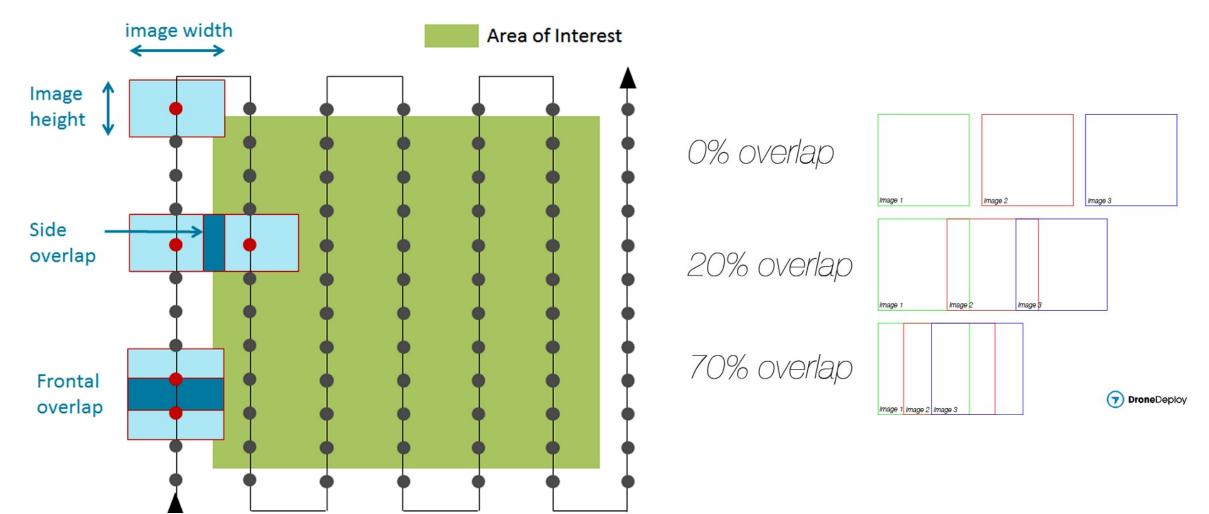
Simple UAVs (<1000€) with normal image(RGB) camera

- No proof of knowledge is required (under 250g).
- No special software is required.
- Little time required for recording
- Up to 50-100ha per battery set possible:
- High area range possible depending on the flight altitude and ground resolution of the image

Grouping of examples by performance

2. UAV with extra cameras

- Very high resolution, near infrared, thermal image etc.) -> therefore more expensive to purchase or more complex to fly
- UAV + thermal imaging camera in the range around 5000€
- UAV + near infrared camera (for CIR images) around 3000€



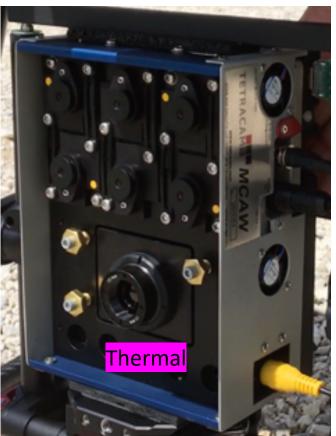
Grouping of examples by performance

3. UAV with Special Cameras (multispectral cameras, laser scap, etc.) or special flight requirements.

- Cameras / sensors can be very expensive
- For accurate orthophotos / surface models from normal images:
 - High overlap of flight strips required (each point in the terrain typically visible in at least 3 overlapping flight strips)
 - Ground Control Points(GCPs) with accurate measurement necessary
 - Special software necessary (from about 1500€, or online service)
- Experienced personnel necessary

Overlapping

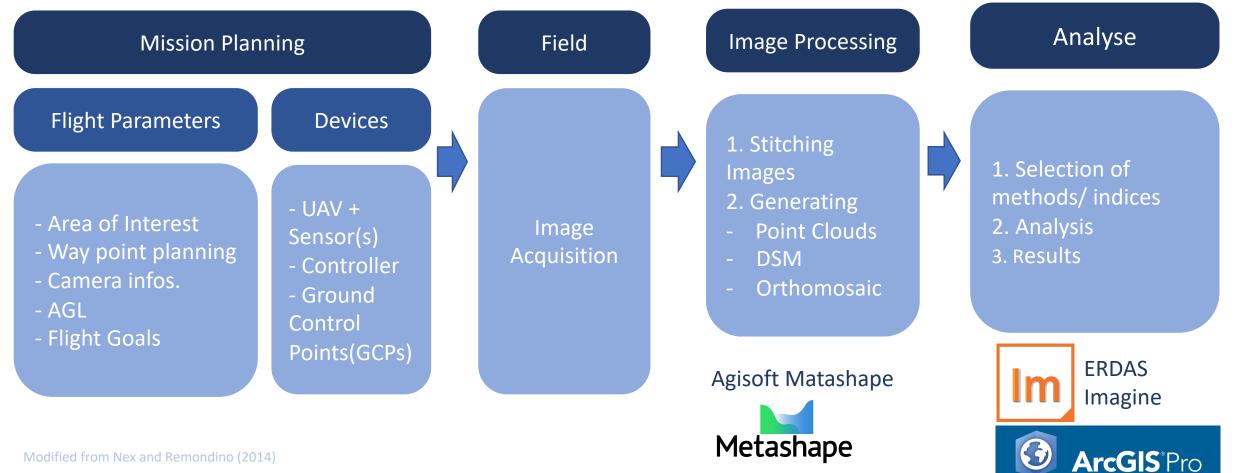
Sensors


Optical - Thermal - Lidar - Microwave - Sonar - Radar

Camera	Manufacture	Filter/Lens Type	Wavelength (nm)	Resolution (Pixels)
Multispectral Camera	Tetracam	1 Near Infrared 2 Green 1 Red 2 Red Edge 1 Thermal	840, 530, 570 670, 710, 750 Thermal	1280 x 1024 640 x 512 (Thermal)
RGB Camera	Sony	Sigma 19mm f/2.8	Red, Green, Blue	6000 x 4000

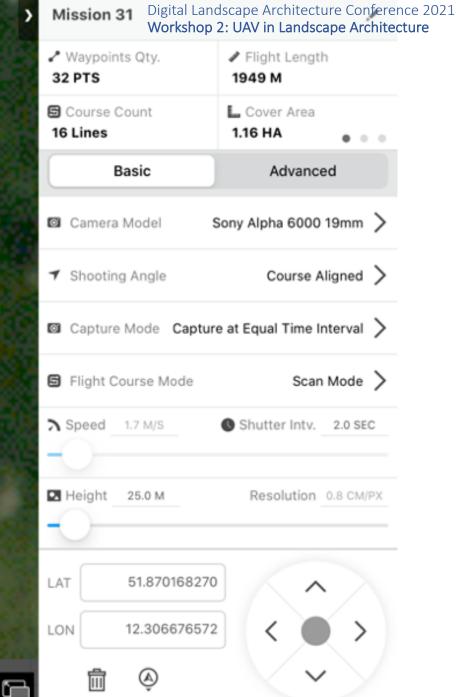
Multispectral Camera

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture


Parrot Sequoia Multispectral Camera

RGB Camera

Workflow


Flight plan on DJI GS Pro app for iPad

(+ 107 M)

(+ 109 M)

🗶 Height

+ 108 M

W LAT > Speed N/A M/S

C MAN

+ 108 M

N/A N/A N/A M

Images Stitching
 Point Clouds
 3D Model
 Orthomosaic

Overlapping: F: 90%, S: 85% @ 50m AGL Resolution: 1.6cm/pixel, ca. with 400 RGB pictures @ 925m Flight Length & 1.13Ha(2.8Acre) Area

Biosenss-Natura2000

w5_2

funding program by Federal Ministry of Education and Research, Germany (Oct. 2019- Sept. 2021)

Image Processing Time and Image Resolution

Area: 1.2 - 1.3 Ha (about 3 Acre) / Plot , 45 data sets in 14 plots

	Alignment	Depth Maps Dense Clouds	Digital Surface Model Resolution	Orthomosaic Resolution
RGB	8 min. –	42min. –	10mm/pix @ 25m	5mm/pix @ 25m
	1hr 22min.	15hr 18min.	20mm/pix @ 50m	10mm/pix @ 50m
Multi-	1hr –	8 min. –	50-100mm/pix	25-50mm/pix
Spectral	13hrs 10min.	43min.	@ 50m	@50m

Software:

Agisoft Matashape

Metashape

Hardware:

- Intel i7-9700K
- 32GB RAM
- NVIDIA RTX 2060 Super

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture

UAVs in Landscape Planning and Nature Conservation

How can we use UAVs for Landscape Planning and Nature Conservation?

1. Documentation/ Monitoring:

- a. Landscape photography, documentation, visual interpretation
- b. Small-scale (single image) documentation of areas
- c. Documentation/monitoring of areas that are difficult to access
- d. Large area documentation / monitoring as Orthomosaic with a high accuracy level
- 2. Research Purposes using Multispectral / Hyperspectral images
 - e.g. Vegetation Health Monitoring, Classification, Structure Analysis, and etc.,
- 3. Counting of Bird Colonies with normal RGB cameras,
- 4. Detection of wild animals / Habitats with thermal sensors (e.g. fawn rescue),
- 5. and so on...

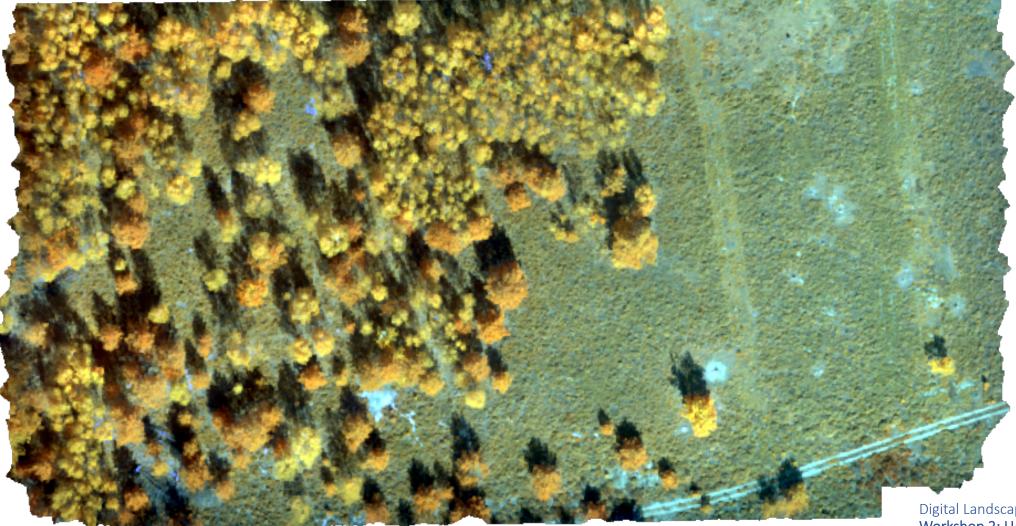
Project 1 Königsbrücker Heide

Client: Municipality of Königsbrück, Saxony, Germany (September - November 2020)

Aim of research:

 to evaluate and recommend a methodology to the authority, in order to regularly check the condition of the habitat types as a monitoring purposes.
 to provide information on the general use of UAVs, the evaluation of aerial photographs and the classification methods.

Königsbrücker Heide


Client: Municipality of Königsbrück, Saxony, Germany (Sept.-Nov. 2020)

- 22MP camera with 9.3mm focal length
- Approx. 40m flight altitude

Königsbrücker Heide

Client: Municipality of Königsbrück, Saxony, Germany (Sept.-Nov. 2020)

- About 2 hectares
- resolution 2cm,
 50m height
- Flight time 20 minutes, 1 battery set
- Multispectral camera
- Software:Agisoft Matashape

- ERDAS Imagine

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture

Project 2 Biosenss-Natura2000

Farming 4.0 in grassland: sustainable use and increase of biodiversity through the use of unmanned aerial vehicles (UAVs)

funding program by Federal Ministry of Education and Research, Germany (October 2019- September 2022)

Project 2 Biosenss-Natura2000

Farming 4.0 in grassland: sustainable use and increase of biodiversity through the use of unmanned aerial vehicles (UAVs)

Object of the research:

to develop an intelligent **site-specific management tool using UAVs** as a contribution to smart farming in grassland

- Preserving species-rich grassland
- Protecting meadow breeder from agriculture activities

Biosenss-Natura2000

funding program by Federal Ministry of Education and Research, Germany (Oct. 2019- Sept. 2022)

24 Mega Pixel camera (Sony Alpha 6000+ Sigma 19mm f/2.8)
Approx. 50m flight altitude

🕒 w17_4 bag


w17_2

w17_Galium

Example of RGB & Multispektral Orthomosaic <mark>8</mark> 50 m (MSP) AGL at 25m (RGB)

3.4GB with 450 pictures

w17_3

808MB with 700 pictures 🗣 w 17_4 bag

w17_1re

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture

w17_3

Basemap: (C) Mapbox (C) (

w17_2

w 17_Galium

16.8 m

16.8 m

Image Classification Unsupervised classification (4,81mm/pixel @25m AGL)

m Software:

Galium boreale

(Northern bedstraw)

2D View #1: uns_rgb25m_noalpha.img (:Layer_1)

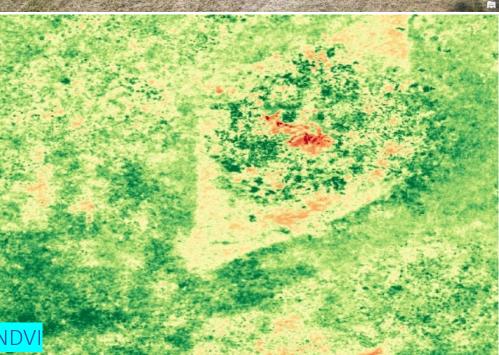

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture

Image Classification Supervised classification (10mm /pixel @50m AGL)

Original RGB 50m

Software:

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture

Image Segmentation

Supervised classification (Maximum Likelyhood)

Recognition of Single Species RGB + NDVI + Segmentation + Supervised Classification

Digital Landscape Architecture Conference 2021 Workshop 2: UAV in Landscape Architecture

Eurasian curlew (Großer Brachvogel)

6°C, 7:00 AM FLIR Vue Pro 640x512 px Resolution: 3.61 cm/px 25m AGL

Biosenss-Natura2000

funding program by Federal Ministry of Education and Research, Germany (Oct. 2019- Sept. 2022)

Census of Bird Colonies with Normal Image Cameras

M. Mitterbacher, Bavarian State Office for the Environment, bird sanctuary, annual report 2020

Eyrie Control with Normal Image Cameras

M. Mitterbacher, Bavarian State Office for the Environment, Bird Sanctuary, Annual Report 2020

UAVs' for Landscape Planning & Nature Conservation Advantage:

- Highly spatial ground resolution 0.5-10 cm resolution
- Highly flexible anytime, anywhere (under permission)
- Timely control collecting data and taking measurements timely.
- Easy control automated control function
- Combination of different sensors
- Cost effective Cheaper than Satellite or Airborne's costs at the same image resolution(???)

Disadvantage:

- Limited (short) flight time (average 15-20 minutes with one battery set)
- Weather effects
- Safety: Collisions with other objects or/ and accidents with people
- Limited Permissions and many regulations

Questions

- What **opportunities** would be in the future to use UAVs for landscape planning and nature conservation?
- What would be the **major applications** of UAVs in the future?
- How will the methods using UAVs affect **college education**?